3.472 \(\int \frac{\cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=149 \[ \frac{\left (a^2+2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac{a^2 \sin (c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac{a \left (a^2-4 b^2\right ) \sin (c+d x)}{2 b d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))} \]

[Out]

((a^2 + 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(5/2)*d) - (a^2*Sin[
c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) + (a*(a^2 - 4*b^2)*Sin[c + d*x])/(2*b*(a^2 - b^2)^2*d*(a
+ b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.173072, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {2790, 2754, 12, 2659, 205} \[ \frac{\left (a^2+2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac{a^2 \sin (c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac{a \left (a^2-4 b^2\right ) \sin (c+d x)}{2 b d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2/(a + b*Cos[c + d*x])^3,x]

[Out]

((a^2 + 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(5/2)*d) - (a^2*Sin[
c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) + (a*(a^2 - 4*b^2)*Sin[c + d*x])/(2*b*(a^2 - b^2)^2*d*(a
+ b*Cos[c + d*x]))

Rule 2790

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> -Simp[
((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 - b^2)), x] - Di
st[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(2*b*c*d - a*(c^2 + d^2)) + (a^2
*d^2 - 2*a*b*c*d*(m + 2) + b^2*(d^2*(m + 1) + c^2*(m + 2)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 2754

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2
)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx &=-\frac{a^2 \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{\int \frac{2 a b+\left (a^2-2 b^2\right ) \cos (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{2 b \left (a^2-b^2\right )}\\ &=-\frac{a^2 \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{a \left (a^2-4 b^2\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\int \frac{b \left (a^2+2 b^2\right )}{a+b \cos (c+d x)} \, dx}{2 b \left (a^2-b^2\right )^2}\\ &=-\frac{a^2 \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{a \left (a^2-4 b^2\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\left (a^2+2 b^2\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac{a^2 \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{a \left (a^2-4 b^2\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\left (a^2+2 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=\frac{\left (a^2+2 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2} d}-\frac{a^2 \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{a \left (a^2-4 b^2\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.536378, size = 115, normalized size = 0.77 \[ \frac{\frac{a \sin (c+d x) \left (\left (a^2-4 b^2\right ) \cos (c+d x)-3 a b\right )}{(a-b)^2 (a+b)^2 (a+b \cos (c+d x))^2}-\frac{2 \left (a^2+2 b^2\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{5/2}}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2/(a + b*Cos[c + d*x])^3,x]

[Out]

((-2*(a^2 + 2*b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(5/2) + (a*(-3*a*b + (a^
2 - 4*b^2)*Cos[c + d*x])*Sin[c + d*x])/((a - b)^2*(a + b)^2*(a + b*Cos[c + d*x])^2))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 0.085, size = 400, normalized size = 2.7 \begin{align*} -{\frac{{a}^{2}}{d \left ( a-b \right ) \left ({a}^{2}+2\,ab+{b}^{2} \right ) } \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3} \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a- \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}b+a+b \right ) ^{-2}}-4\,{\frac{a \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}b}{d \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) ^{2} \left ( a-b \right ) \left ({a}^{2}+2\,ab+{b}^{2} \right ) }}-4\,{\frac{a\tan \left ( 1/2\,dx+c/2 \right ) b}{d \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) ^{2} \left ( a+b \right ) \left ({a}^{2}-2\,ab+{b}^{2} \right ) }}+{\frac{{a}^{2}}{d \left ( a+b \right ) \left ({a}^{2}-2\,ab+{b}^{2} \right ) }\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a- \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}b+a+b \right ) ^{-2}}+{\frac{{a}^{2}}{d \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ) }\arctan \left ({(a-b)\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}}} \right ){\frac{1}{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}}}+2\,{\frac{{b}^{2}}{d \left ({a}^{4}-2\,{a}^{2}{b}^{2}+{b}^{4} \right ) \sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2/(a+b*cos(d*x+c))^3,x)

[Out]

-1/d*a^2/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3-4/d/
(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*b-4/d/(tan(
1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*b+1/d*a^2/(tan(1/2
*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)+1/d*a^2/(a^4-2*a^2*b^2+
b^4)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+2/d/(a^4-2*a^2*b^2+b^4)/((a-b)*(
a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*b^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.23701, size = 1281, normalized size = 8.6 \begin{align*} \left [-\frac{{\left (a^{4} + 2 \, a^{2} b^{2} +{\left (a^{2} b^{2} + 2 \, b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (a^{3} b + 2 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + 2 \,{\left (3 \, a^{4} b - 3 \, a^{2} b^{3} -{\left (a^{5} - 5 \, a^{3} b^{2} + 4 \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \,{\left ({\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \,{\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) +{\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d\right )}}, \frac{{\left (a^{4} + 2 \, a^{2} b^{2} +{\left (a^{2} b^{2} + 2 \, b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (a^{3} b + 2 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) -{\left (3 \, a^{4} b - 3 \, a^{2} b^{3} -{\left (a^{5} - 5 \, a^{3} b^{2} + 4 \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d \cos \left (d x + c\right )^{2} + 2 \,{\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) +{\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*((a^4 + 2*a^2*b^2 + (a^2*b^2 + 2*b^4)*cos(d*x + c)^2 + 2*(a^3*b + 2*a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2
)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c
) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + 2*(3*a^4*b - 3*a^2*b^3 - (a^5 - 5*a^3*b^2
+ 4*a*b^4)*cos(d*x + c))*sin(d*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b -
3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d), 1/2*((a^4 + 2*a^2*
b^2 + (a^2*b^2 + 2*b^4)*cos(d*x + c)^2 + 2*(a^3*b + 2*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x
+ c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (3*a^4*b - 3*a^2*b^3 - (a^5 - 5*a^3*b^2 + 4*a*b^4)*cos(d*x + c))*s
in(d*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*
b^7)*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.35381, size = 338, normalized size = 2.27 \begin{align*} -\frac{\frac{{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}{\left (a^{2} + 2 \, b^{2}\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt{a^{2} - b^{2}}} + \frac{a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 4 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 4 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

-((pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c)
)/sqrt(a^2 - b^2)))*(a^2 + 2*b^2)/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) + (a^3*tan(1/2*d*x + 1/2*c)^3 + 3*
a^2*b*tan(1/2*d*x + 1/2*c)^3 - 4*a*b^2*tan(1/2*d*x + 1/2*c)^3 - a^3*tan(1/2*d*x + 1/2*c) + 3*a^2*b*tan(1/2*d*x
 + 1/2*c) + 4*a*b^2*tan(1/2*d*x + 1/2*c))/((a^4 - 2*a^2*b^2 + b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x +
 1/2*c)^2 + a + b)^2))/d